Super-resolution on brain MPRAGE data

Chaowei Wu, Yu Wang, Ruihao Liu

01/09/2018

Introduce of Super-Resolution problem

Super-resolution problem

Traditional [1]

 $R_{\text{reg}}\{y\} = \underset{x \in \mathcal{X}}{\operatorname{argmin}} f(H\{x\}, y) + g(x), \qquad \text{H: Degradation model g: Regularize term f: Cost function}$

g: sparsity-promoting regularizers, total variation [4]

Handcraft the forward model, cost function, regularizer, and optimizer. Limited prior information.

Learning based solving [1]

 $R_{\text{learn}} = \underset{R_{\theta}, \theta \in \Theta}{\operatorname{argmin}} \sum_{n=1}^{N} f(x_n, R_{\theta}\{y_n\}) + g(\theta)$

R: learned model g: Regularize term f: Cost function

Res-net GAN and U-net have been applied in super-resolution problem. [2][3]

Learned model with complex function can absorb more prior information.

Mccann M T, Jin K H, Unser M. Convolutional Neural Networks for Inverse Problems in Imaging: A Review[J]. IEEE Signal Processing Magazine, 2017, 34(6):85-95.
 Chen Y, Xie Y, Zhou Z, et al. Brain MRI Super Resolution Using 3D Deep Densely Connected Neural Networks[J]. Proceedings, 2018:739-742.

[3] Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

[4] E. J. Candes, J. Romberg, and T. Tao, "Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489–509, Feb. 2006.

Issues of current learning based methods

- Lack analysis of the learning process What's to be learned? How to control?
- Novel Feature
- Artifact

Generated High

True High

Our Goal

- Analysis what prior information we want to learn? Help Generator learn it.
- Recover novel feature
- Remove artifacts

Step 1: Machine Learning

Analysis of machine learning

• Machine Learning: Learn P(output | input), give the most probable output.

$$\mathsf{Image} = \mathsf{f}(\theta_t, \theta_p, \theta_g)$$

 Θ_t : tissue property Θ_p : parameters related to imaging Θ_g : geometry of the brain

• Traditional:

P($\theta_{t-high}, \theta_{g-high} | \theta_{t-low}, \theta_{g-low}$)

• Our methods:

Do normalization. No patch

P($\theta_{t-high} \mid \theta_{t-low}$)

To train more accurately and efficiently.

Neural Network we use

Result

- **1. Effects of Normalization**
- 2. Comparison between Res-net GAN& U-net GAN

1. Effects of Normalization

U-net: Normalization vs Non-normalization

Normalization helps learning converge faster and lower the loss.

1. Effects of Normalization U-net GAN result

For U-net, normalization does make training more efficient and accurate.

Res-net GAN vs U-net GAN

- Resolution
- Novel Feature recovery
- Artifact

Resolution

Resolution of generated high are comparative.

Artifact

High

Generate high

Res-net

GAN

Res-net GAN generates more artifacts.

Novel Feature

Novel Feature U-net GAN

Low

Generated high

U-net GAN is learning tissue probability distribution.

Conclusion:

- Normalization does help learn more efficiently and accurately.
- Tissue probability distribution learned by U-net GAN. Need further study. Help novel feature recovery.
- U-net GAN outweighs Res-net GAN in Artifacts.

U-net GAN in the following

Future Direction:

Improve the neural network structure better fits data.

- To generate higher resolution
- Get fewer artifact
- Get novel feature more normal-like

Step#2 Novel Feature Extraction

The Problem • Much higher resolution • Obscure novel feature

Sparsity Based Novel Feature Extraction model

$$argmin_{\rho}||d' - \Omega F\rho||_{2}^{2} + \lambda ||W\rho||_{1}$$
$$d' = d - d_{ref}$$

In which d is true inner k space data, d_{ref} is data consistency result k space data, W represents sparsity transform, Ω represents truncation operator, F is Fourier Transorm Operator, λ is regularization constant, and ρ is to be solved.

Assumption

- Difference in inner k space contains novel feature
- Feature Sparsity (Image domain, TV, etc.)

Hypothesis:

- 1) Generated high resolution can recover the normal tissue perfectly but poorly for novel feature
- 2) Novel feature is sparse and perfect sparse transform is found for regularization.

Low resolution inner k-space – Generated high resolution inner k-space

Original Difference

Novel Feature

Original Difference

Extracted Novel Feature --- Image Domain Sparsity

Original Difference

Extracted Novel Feature --- Total Variation Sparsity

Step#2 Result

--- With Extracted Novel Feature Constraint by Image Domain Sparsity

- Enhanced Contrast in Novel Feature
- Limitation: Still Low-resolution Feature Ringing

Unet-GAN

Ground Truth

After Novel Feature Extraction

Step#2 Result

--- With Extracted Novel Feature Constraint by Total Variation Sparsity

- Enhanced Contrast in Novel Feature
- Not Bring Back Ringing
- Limitation: Still Low-resolution Feature

Unet-GAN

Ground Truth

After Novel Feature Extraction

Conclusion and Improvement

1. For now we could extract features by sparsity constraint, enhancing its contrast but not resolution;

2. Total Variation Sparsity doesn't bring back ringing, while Image Domain Sparsity does.

Improvement:

- 1. To locate novel feature
- 2. To get a realistic image of brain without feature in CNN

Validation: Stage1 (Ideal)

- Known location
- Tumor's low resolution image

Low Resolution Image of Tumor

Novel Feature Recover

Low novel

Recovered novel

Novel Feature Recover

Validation: Stage2

- Known location
- Low resolution Image of brain with tumor
- Low resolution Image of brain

Low Resolution Image of Brain with Tumor

Low Resolution Image of Tumor

Novel Feature Recover (Stage 2)

Difference of image with/without tumor

High novel

Recovered novel

Validation: Stage3

- Known location
- Low resolution image of brain with tumor
- Inner k space of CNN predicted image

Low Resolution Image of CNN Prediction

Novel Feature Recover (Stage 3)

Difference of image with/without tumor

High novel

Recovered novel

Stage4 (Practical)

- Unknown location
- Sparsity Constraint
- Low resolution image of brain with tumor
- Inner k space of CNN predicted image

Low Resolution Image of Brain with Tumor

Low Resolution Image of CNN Prediction

Step#2 Result

--- With Extracted Novel Feature Constraint by Image Domain Sparsity

- Enhanced Contrast in Novel Feature
- Limitation: Still Low-resolution Feature Ringing

Unet-GAN

Ground Truth

After Novel Feature Extraction

Step3: Data Consistency

Data Consistency

- Why
- How
- Results

- Prior (absorb)
- Artifacts (remove)

HOW (traditional way)

the result we want to find

$$argmin_{x} \left(\|d_{low} - Ax\|_{2}^{2} + \lambda \|d_{pri} - x\|_{2}^{2} \right)$$

information we get

prior information

 λ :regularization constant A:truncation+fft

Results (traditional way)

Breakpoint exists may caused by ill-posed problem

Results of traditional way (image domain)

Before data consistency

psnr:	24.2578
ssim:	0.8918
mse:	118.3385

after

24.2580 0.8918 118.3380

Results of traditional way (total variance)

Before data consistency

psnr:	29.1038
ssim:	0.9226
mse:	23.3266

after

29.1040 0.9226 23.3211

How (generalized series model)

$$argmin_{c_l} ||d - \Omega \odot [\widetilde{d}(k) * \sum_{l=-L}^{L} c_l \,\delta(k - l\Delta k)]||_2^2 + \lambda \sum_{l} ||c_l||_2^2$$

d:low resolution $ilde{d}(k)$:prior information

Results of GSM (image domain)

Before data consistency

psnr:	24.2578
ssim:	0.8918
mse:	118.3385

after

24.6762 0.8970 112.5964

Results of GSM (total variance)

Before data consistency

psnr:	29.1038
ssim:	0.9226
mse:	23.3266

after 24.2584 0.8918 118.33

Optimal L (total variance)

Target Data:

Data Consistency Result:

Conclusion

- Traditional way to do data consistency does little work in our case.
- GSM performs well in novel feature that done in image domain, but decreases the quality of image when using total variance. Because the latter way already performs well in novel feature.
- Optimal L for GSM is about 30.
- We can get back phase by data consistency but not perfect because of noise and discontinuity of the boundary.

Conclusion:

Normalization No patch → learn more efficiently and accurately

Image sparsity & TV sparsity → Recover novel features contrast

Traditional & GSM → Improve the image quality

4 times High resolution + Novel feature + without Artifact

Future Plan:

- Optimization of neural network structure
- More suitable sparsity constraint & Better Data Consistency