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Abstract 

The accurate diagnosis in the early stage of schizophrenia (SZ) is of great importance yet remains 

challenging. The classification between SZ and control groups based on magnetic resonance 

imaging (MRI) data using machine learning method could be helpful for SZ diagnosis. Increasing 

evidence showed that the combination of multimodal MRI data might further improve the 

classification performance However, medication effect has a profound influence on patients’ 

anatomical and functional features and may reduce the classification efficiency. In this paper, we 

propose a multimodal classification method to discriminate drug-naïve first-episode schizophrenia 

patients from healthy controls by a combined structural MRI, diffusion tensor imaging (DTI) and 

resting state-functional MRI data. To reduce the feature dimension of multimodal data, we apply 

sparse coding (SC) for feature selection and multi-kernel support vector machine (SVM) for feature 

combination and classification. The best classification performance with the classification accuracy 

of 84.29% and area under the ROC curve (AUC) of 81.64% was achieved when all modality data 

were combined. Interestingly, the identified functional markers were mainly found in default mode 

network (DMN) and cerebellar connections, while the structural markers were within limbic system 

and prefrontal–thalamo–hippocampal circuit. 
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1. INTRODUCTION 

The accurate diagnosis in the early stage of schizophrenia (SZ) is of great importance yet 

remains challenging. The brain morphological changes and functional disconnections are closely 

related to SZ clinical symptomology, which were revealed using structural magnetic resonance 

imaging (sMRI), diffusion tensor imaging (DTI) and blood oxygen level dependent (BOLD)-

functional MRI (fMRI) (Teipel et al., 2015). 

The classification between SZ and control groups based on MR images using machine learning 

method could be helpful for SZ diagnosis. Previous classification studies were mostly based on 

either morphological (Fan et al., 2007; Nieuwenhuis et al., 2012; Pina-Camacho et al., 2015) or 

functional features (Bassett et al., 2012; Guo et al., 2014a; Su et al., 2013; Yu et al., 2013a) alone. 

Increasing evidence showed that the combination of multimodal MRI data might further improve 

the classification performance of SZ (Peruzzo et al., 2015; Sui et al., 2013; Yang et al., 2016). 

However, the patients in the studies were all under medication, which has a profound influence on 

patients’ anatomical and functional features and may reduce the classification efficiency (Li et al., 

2012; Nieuwenhuis et al., 2012; Ren et al., 2013; Su et al., 2010; Yu et al., 2013b; Zeng et al., 2016). 

In this paper, we combine multimodal MRI data, i.e. sMRI, DTI, and rs-fMRI, to perform a 

classification study between drug naïve first episode psychosis (FEP) patients and normal controls. 

To reduce the feature dimension of multimodal data, we apply sparse coding (SC) for feature 

selection and multi-kernel support vector machine (SVM) for feature combination and classification. 

We compare the classification performance using single-modal image features including cortical 

measures extracted from sMRI, fractional anisotropy (FA) and mean diffusivity (MD) extracted 

from DTI, functional connectivity (FC) and fractional amplitude of low-frequency fluctuation 

(fALFF) from fMRI, with those using multimodal feature combination. The most important features 

contributing to the classification were investigated and discussed to provide further insights into the 

pathophysiology of FES.  



 

Fig.1 The framework of multimodal classification including data preprocessing, feature extraction, 

feature selection, multimodal combination and classification, where MRI denotes the magnetic 

resonance imaging and SVM denotes Support Vector Machine.  

 

2. MATERIALS  

Participants 

The demographic and clinical information of the participants in our study is listed in Table 1. 

There are 40 drug-naïve FES patients recruited from Shanghai Mental Health Center (SMHC), 

China, and 29 healthy subjects matched in age, gender and education involved in this study. All 

patients fulfilled the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition (DSM-IV) 

diagnosis criteria for schizophrenia confirmed by a senior psychiatrist. Exclusion criteria include 

substance abuse, personality disorders, mental retardation, severe cardiovascular, hepatic and renal 

diseases and pregnancy. All FES patients do not show any comorbid psychiatric disorders. The 

psychopathology and symptom severity were assessed using the positive and negative syndrome 

scale (PANSS). The study was approved by the Institutional Review Board of Shanghai Mental 

Health Center. Written informed consent was obtained from each participant. 

 

 



 

Table 1  

Demographic statistics and clinical analysis of the participants. 

FES: First-episode schizophrenia 

Data were presented with the mean score and standard deviation as mean (std). 

 

Data Acquisition 

All the MR data were collected on a 3.0-T Siemens Verio MR Scanner (Siemens AG, Erlangen, 

Germany) with a 32-channel head coil at SMHC. During the scanning process, all the participants 

were required to lay supinely with inflatable pillows placed between the head and coil to minimize 

motion artifacts. The participants were instructed to rest quietly with their eyes closed but to remain 

awake and avoid systematic thinking during scanning. The main parameters of imaging were as 

follows: anatomical T1-weighted images were acquired using a magnetic preparation fast gradient 

echo (MPRAGE) sequence with echo time (TE) = 3.65 ms, repetition time (TR) = 2530 ms, 

inversion time (TI) = 1100 ms, flip angle (FA) = 7°, field of view (FOV) = 256 mm, matrix size = 

256 × 256, slice thickness = 1.0 mm, and slice number = 224. Blood oxygen level dependent 

(BOLD)-fMRI data were acquired with TE = 30 ms, TR = 2000 ms, FA = 90°, FOV = 220 mm, 

matrix size = 256 × 256, slice thickness = 4.0 mm, slice volume = 180, slice number = 30 and voxel 

size = 3.4 × 3.4 × 4.0 mm. DTI data were acquired along the AC/PC line, throughout the whole 

brain, with TE = 90 ms, TR = 10200 ms, FOV = 256 × 256 mm, matrix size = 128 × 128, slice 

thickness = 2.0 mm.  

 

Structural MRI Data Processing 

For sMRI data processing, we used Freesurfer 6.0.0 (B et al., 2004; Reuter and Fischl, 2011) 

and performed motion correction and conform, non-uniform (NU) intensity normalization, 

Talairach registration, intensity normalization, skull stripping for the following segmentation and 

calculation. Subcortical segmentation was subsequently performed and parcellation was conducted 

based on Destrieux atlas, which consists of 74 ROIs in each hemisphere. Altogether, we selected 6 

different measures as our structural features (Sweeney et al., 2014), including cortical thickness, 

gray matter volume, surface area, mean curvature, curvature index and folding index. The total 

feature number of sMRI data is equal to  

 6 × 74 ROIS × 2 Hemispheres = 888 features (1) 

 

 

 
Drug-naïve  

FES patients   
Healthy Controls P-value 

Number of subjects 40  29  

Age (years) 27.13 (5.90) 27.03 (4.32) 0.909 

Gender (females/males) 18/22 15/14 0.506 

Education (years) 12.91 (3.14) 14.21 (2.37) 0.080 

PANSS total score 73.54 (17.47)   

Course of psychosis (month) 6.51 (11.61)   



DTI Processing 

All DTI data were preprocessed using Pipeline for Analyzing braiN Diffusion imAges 

(PANDA, http://www.nitrc.org/projects/panda), which is a toolbox based on FMRIB Software 

Library (FSL) (Smith et al., 2004). All DICOM files were converted into NIFTI format images, 

followed by skull removal and eddy-current effect correction. The diffusion tensor measures 

including fractional anisotropy (FA) and mean diffusivity (MD) were calculated. We registered the 

images to the standardized template (MNI152) and the images were smoothed via a Gaussian kernel 

of 2 mm. Finally, we averaged the FA and MD values within 50 ROIs defined by the Johns Hopkins 

University white matter template. There are 100 total features, i.e., 50 for FA and 50 for MD, 

selected for further classification. 

 

Resting-state fMRI Processing 

fMRI data preprocessing was conducted by Data Processing Assistant for Resting-State fMRI 

(DPARSF v2.3, http://www.rfmri.org/DPARSF) program, which is based on Statistical Parametric 

Mapping 8 (SPM8, http://www.fil.ion.ucl.ac.uk/spm) and Resting-State fMRI Data Analysis Toolkit 

(REST v1.8, http://www.restfmri.net). First 10 volumes were removed for subjects’ adaption to 

environment and the stabilization of the machine. The remaining 170 volumes were subsequently 

corrected for acquisition time with the middle slice as the reference. For individual subject, we 

performed head motion correction by adapting each time series to the first volume with a six-

parameter and a least-square minimization linear spatial transformation. Then the functional images 

were normalized to standard EPI template and transformed to Montreal Neurological Institute (MNI) 

stereotactic space with voxel size resampled to 3x3x3 mm3. A Gaussian kernel of 4mm full width 

at half-maximum (FWHM) was applied to spatially smooth the data. Further detrend was used to 

correct the linear drifting of signal and a temporal band-pass filter (0.01-0.08Hz) was utilized to 

remove the very high frequency physiological noise and low frequency drift of the fMRI data. 

Functional connectivity (FC) matrices were constructed for all subjects by calculating the 

Pearson’s correlation coefficients of mean time series in each pair of regions of interest (ROIs) 

based on 116 automated anatomical labeling (AAL) template. Fisher’s Z transformation was further 

applied to FC matrices to improve the normality of the correlation coefficients. Finally, we obtained 

6670 FC values as FC features for each subject  

Fractional amplitude of low frequency fluctuations (fALFF) were calculated in each voxel 

using REST software with the following steps. Fast Fourier Transformation (FFT) were performed 

on band-pass (0.01-0.08Hz) filtered fMRI data to acquire the power spectrum. For each voxel, the 

square root of spectral power was calculated at each frequency and averaged across the entire 

frequency range. fALFF value was defined as the ratio of the power of each frequency within 0.01-

0.08Hz to that of the whole frequency ranged from 0-0.25Hz. Then the Fisher’s Z transformation 

was applied. In this study, fLAFF analysis was conducted within the default whole brain mask and 

finally we got 70831 fALFF values as features for each participant. 

 

Feature Matrices Construction 

Suppose the subject number is 𝑃, and the number of features is 𝑄. For each feature matrix, 

its size can be represented as 𝑃 × 𝑄. For sMRI and DTI, since the dimension of features in each 

modality is relatively small, we generated one matrix for each modality. For rs-fMRI, the feature 

dimension is relatively high. Therefore, we created for each modality a separate matrix. Finally, we 

http://www.nitrc.org/projects/panda
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obtained 4 feature matrices from 3 modalities, which served as the inputs of the classification and 

regression models. To reduce the effect of unit diversity of the extracted measurements and make 

the multimodal features comparable, we applied the Min-Max scaling method for all features to 

ensure each one scaled within the range of 0 to 1 across all the subjects (Raschka, 2014). 

 

3. Methods 

After extraction of the imaging features from multimodal MRI images, we propose to apply 

the L1-regularzied sparse coding (SC) method for selecting the discriminant features for each 

modality and a multi-kernel SVM classification method to combine multimodal features for 

diagnosis of FES. Fig.1 demonstrates the general framework of the proposed method. 

Feature Selection based on Sparse coding 

To avoid missing the important features for classification, we extracted the features as many 

as possible from multimodal MRI data. Thus, the total extracted multimodal features have huge 

dimensionality (>70000), when compared with the small number of subjects. It is necessary to 

develop a suitable feature selection method for the subjects to identify the discriminative features 

to facilitate disease classification and interpretation. Traditionally, the t-test method is used to find 

significant biomarkers by individually evaluating the discrimination of each feature with p-value. 

However, this method has completely ignored the correlation of imaging features and failed to 

consider the discrimination of multiple variable combination. This is not suitable for our application 

because informative imaging biomarkers may be distributed over more than one brain region. Thus, 

to identify the informative imaging biomarkers, a multivariate model is learned to consider the 

combination of features over the distant brain regions for handling the multivariate interactions in 

feature selection. Sparse coding (SC), also called sparse representation, as a machine learning 

method, has been widely applied to the task of feature selection (Lai et al., 2009; Lan et al., 2010), 

as well as classification (Lai and Jiang, 2016; Wright et al., 2009) in the field of face recognition. 

In this work, a sparse coding method with 𝐿1 -regularization (Ghosh and Chinnaiyan, 2005; 

Tibshirani, 2011) was applied to select the informative features for each modality. Unlike the 

traditional two-sample t-test, SC considers the combination of multi-variable features to achieve a 

global significance.  

Let 𝚨 represents a 𝑃 × 𝑄 feature matrix where 𝑃 and 𝑄 are the numbers of subjects and 

features in the matrix, respectively. The p-th row of 𝚨 is the feature vector of the image from the 

p-th participant. y denotes the class label of all participants with the p-th element being the class 

label of the p-th participant. Thus, a linear regression model can be used to generate the class outputs 

with a set of features as follows: 

 y = 𝚨𝜔⃑⃑ + 𝜀 (2) 

where 𝜔⃑⃑ = (𝜔1, 𝜔2, … , 𝜔𝑄)
𝑇
is a vector of coefficients assigned to the corresponding features, and 

𝜀 is an independent error term. The class output can be characterized as the linear combination of 

the features. One popular method to solve this problem is the least square optimization. When the 



number of extracted features is large, 𝐿1 -regularized sparsity is imposed on the coefficients to 

choose a small number of relevant and discriminant features for classification. The 𝐿1-regularized 

least square problem, also called as Lasso problem, can be formulated as: 

 𝜔⃑⃑ = argmin𝜔‖𝑦 − 𝚨𝜔⃑⃑ ‖2
2 + z‖𝜔⃑⃑ ‖1,   𝑠. 𝑡.   𝜔⃑⃑ 𝑖 ≥ 0, ∀𝑖 (3) 

where z is the sparsity regularization parameter which controls the amount of zero coefficients in 

𝜔⃑⃑  . The non-zero element in 𝜔⃑⃑   indicates that the corresponding feature is more relevant to the 

classification. When the z value increases, the number of non-zero elements in 𝜔⃑⃑  decreases, and 

more features will be selected to be relevant. Thus, the 𝐿1 -regularized SC method provides an 

effective multivariate regression model to select a subset of relevant features by taking into 

consideration both the correlation of features to the class label and the combinations of individual 

features (Liu et al., 2014). By adjusting the values of sparsity, various number of features can be 

selected without ranking. This method can jointly select the features from multiple contiguous brain 

regions based on the population difference. However, SC cannot work well for multimodal 

classification since different modality features have different discriminability. How to effectively 

combine the multimodal features for classification is still challenging. Thus, we propose to apply 

the multi-kernel SVM for multimodal classification.  

Multimodal Classification 

We applied the multi-kernel support vector machine (MKL-SVM) classifier to combine the 

multimodal features for classification. Different from conventional linear classifier, the kernel-based 

SVM classifier maps the linearly non-separable features in the original lower-dimension space to a 

higher dimension feature space, where they are more likely to be separable with a kernel function. 

In the higher dimension space, a maximum margin hyperplane is calculated with SVM for 

classification. To combine the multimodal features 𝑀 = {sMRI, DTI, FC, fALFF} , MKL-SVM 

solves the primal problem (Zhang et al., 2011b): 

 

min
𝜔𝑚,𝑏,𝜉𝑖

   
1

2
∑ 𝛽𝑚‖𝜔𝑚‖2

𝑚∈𝑀
+ 𝐶 ∑𝜉𝑖

𝑃

𝑖=1

 

𝑠. 𝑡.    𝑦
𝑖
(∑ 𝛽𝑚((𝜔𝑚)𝑇𝜙𝑚(𝑥𝑖

𝑚) + 𝑏)
𝑚∈𝑀

) ≥ 1 − 𝜉𝑖 

𝜉𝑖 ≥ 0, 𝑖 = 1,… , 𝑃. 

(4) 

where 𝜔𝑚, 𝜙(𝑥𝑖) are the normal vector of hyperplane and the kernel-induced mapping function, 

respectively;  𝑥𝑖
𝑚 and 𝛽𝑚 ∈ [0,1] are the feature vector of m-modality and the weight assigned to 

the feature of m-modality; 𝑦𝑖 is the class label of subject i; The dual form of MKL-SVM is defined 

as: 

 max
𝛼

   ∑𝛼𝑖

𝑃

𝑖=1

−
1

2
∑∑𝛼𝑖𝛼𝑗𝑦𝑖

𝑦
𝑗

𝑃

𝑗=1

[∑ 𝛽𝑚
𝑚∈𝑀

𝐾(𝑥𝑖
𝑚, 𝑥𝑗

𝑚)]

𝑃

𝑖=1

    (5) 



𝑠. 𝑡.    ∑𝛼𝑖

𝑃

𝑖=1

𝑦
𝑖
= 0, 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1,… , 𝑃 

where 𝐾(𝑥𝑖
𝑚, 𝑥𝑗

𝑚) is the kernel function for two training subjects on the m-modality and the cost 

parameter 𝐶  is set to 1. A mixed kernel 𝐾(𝑥𝑖 , 𝑥𝑗) = ∑ 𝛽𝑚𝑚∈𝑀 𝐾(𝑥𝑖
𝑚, 𝑥𝑗

𝑚)  is obtained by a 

weighted combination of the multiple kernels generated from multimodal features. We constrain 

∑ 𝛽𝑚𝑚∈𝑀 = 1  and use a coarse-grid search through cross-validation on the training samples to 

obtain the optimal weights. For a new test sample, the output (predicted labels) of MKL-SVM can 

be generated as below: 

 𝑓(𝑥) = 𝑠𝑖𝑔𝑛 {∑𝛼𝑖𝑦𝑖
[∑ 𝛽𝑚

𝑚∈𝑀
𝐾(𝑥𝑖

𝑚, 𝑥𝑚) + 𝑏]

𝑃

𝑖=1

} (6) 

In our implementation, the LIBSVM toolbox (Chang and Lin, 2011) is used to implement the SVM 

classifier with the mixed kernel matrix for the multi-modal classification tests. 

4. Results and Discussion 

To evaluate the classification performance, the 10-fold cross-validation was performed. Each 

time the 9-fold data were used for training and 1 fold for testing. In the experiment, the parameters 

to be optimized are sparsity 𝑧, which can be adjusted to change the number of selected features, 

and the weights 𝛽𝑚, 𝑚 ∈ 𝑀. Grid search was used to optimize the parameters from 0 to 1 at step of 

0.05 for 𝑧 and from 0 to 1 at step of 0.1 for 𝛽𝑚. 

The classification accuracy, sensitivity and specificity, were calculated as follows:   

 accuracy = 
TN + TP

TN + FP + FN + TP
% (7) 

 sensitivity = 
TP

FN + TP
% (8) 

 specificity = 
TN

TN + FP
% (9) 

where TP is the number of FES patients correctly classified, TN is the number of HCs correctly 

predicted, FP denotes the number of HCs falsely classified, and FN is the number of falsely 

classified FES patients. Thus, the sensitivity denotes the accuracy to classify patients while the 

specificity evaluates the accuracy to classify healthy controls. In addition, ROC curve was 

demonstrated by sensitivity and 1-specificity at different thresholds and area under the ROC curve 

(AUC) was calculated to further evaluate the classification performance (Huang and Ling, 2005; 

Ling et al., 2003). We will present the classification results of single/multi-modality and discuss the 

selected biomarkers in the following. 

Single-modal Classification 

We firstly test the classification performance with single modality. There are 4 types of features 

(denoted as sMRI, DTI, FC, fALFF) extracted from 3 MRI modalities: sMRI, DTI and fMRI. Table 

2 compares the classification performance and feature number of each modality as well as 

multimodal classification. The comparison of the corresponding ROC curves is also demonstrated 

in Fig.2. From these results, we can see that FC feature of rs-fMRI can achieve the best single-modal 



classification result with accuracy at 75.24% and AUC at 75.26%. The fALFF and DTI features 

have relatively lower discriminative capability. Table 2 also presents the dimension of selected 

features (the input of classifier) before and after using SC. We can see that SC can effectively 

identify the informative features and improve the classification performance. Subjects can be 

correctly classified with less than 5% features selected by SC, which indicates that a large number 

of imaging features are redundant for classification. 

Table 2 Classification results of first-episode schizophrenia patients and healthy controls. The 

classification performance is evaluated by accuracy, sensitivity, specificity, AUC on both single 

modal and multimodal combination. Both SVM and SC+SVM were conducted and compared. # 

represents the dimension of features participated in SVM classifier. 

 

 

Fig.2 ROC curves for classification of FES and HC on 4 different MRI feature types (sMRI, DTI, 

FC and fALFF) and their multimodal combination via SC+SVM. MKL: multimodal classification 

by multi-kernel linear SVM. The gray diagonal line denotes random classification result. 

 

Multimodal Classification 

Feature Accuracy (%) Sensitivity (%) Specificity (%) AUC (%) # of features  

sMRI 
61.43 85.00 30.00 54.66 888 

71.19 77.50 63.33 68.19 4 

DTI 
60.48 65.00 53.33 50.60 100 

67.86 72.50 61.67 63.45 9 

FC 
74.05 82.50 63.33 74.48 6670 

75.24 80.00 68.33 75.26 39 

fALFF 
60.71 80.00 35.00 56.29 70831 

69.29 80.00 55.00 61.90 1662 

Multimodal 
76.67 95.00 58.33 42.84 78489 

84.29 92.50 73.33 81.64 1714 



The performance of multimodal classification is better than any single modal one, with 84.29% 

accuracy and 81.64% AUC, showing that the combination of multiple modalities by our proposed 

method significantly improves the classification performance. Moreover, Table 3 and Table 4 show 

the results of classification accuracy and AUC, respectively, with different combinations of multiple 

MRI modalities. The experiments were performed by gradually adding a new type of feature. From 

these results, we can see that the classification performance improved by combing sMRI with DTI. 

When the features of FC and fALFF were further added to the sMRI+DTI combination, the 

classification performance improved further and reached the best when combining all modal 

features together. These results indicate that adding an extra modality feature could improve the 

classification performance while multimodal features achieve the best classification performance 

for disease diagnosis. 

  

 

Table 3 The comparison of classification accuracy with different combinations of multiple feature 

types. Step 1, 2, 3, 4 indicate gradually including multimodal features into the combination.  

 

Step\Combined: sMRI (%) DTI (%) FC (%) fALFF (%) 

1:- 71.19 67.86 75.24 69.29 

2:sMRI - 74.29 75.71 74.05 

3:sMRI+DTI - - 78.57 75.48 

4:sMRI+DTI+FC - - - 84.29 

 

Table 4 The comparison of AUC with different combinations of multiple feature types. Step 1, 2, 3, 

4 indicate gradually including multimodal features into the combination.  

Step\Combined: sMRI (%) DTI (%) FC (%) fALFF (%) 

1:- 68.19 63.45 75.26 61.90 

2:sMRI - 68.97 75.52 68.45 

3:sMRI+DTI - - 79.31 73.02 

4:sMRI+DTI+FC - - - 81.64 

  

Biomarker Identification 

We examined the selected multimodal features by SC with the optimal regularization parameter 

for single-modal classification. In our experiment, the standard 10-fold CV was used. The selected 

features are different for different folds. Thus, we compute the frequency of features selected in 10 

folds and select the imaging features with frequency higher than 5 as the identified biomarkers. 

Table 5 listed the identified sMRI and DTI biomarkers. Fig.3 showed the identified regions for DTI 

data. Fig. 4 demonstrated the identified FC biomarkers from fMRI data.  

For the biomarkers of sMRI data as shown in Table 5, the identified biomarkers inculde the 

cortical thickness in the left superior segment of the circular sulcus of the insula, the mean curvature 

of left temporal plane of the superior temporal gyrus (STG), the curvature index of left posterior 

transverse collateral sulcus, and right long insular gyrus and central sulcus of the insula.  



For DTI biomarker, the FA changes are within left superior corona radiata, left fornix, left posterior 

thalamic radiation. The MD changes are in right uncinate fasciculus (UF), right superior cerebellar 

peduncle, right posterior thalamic radiation (include optic radiation), right cingulum (cingulate 

gyrus). Both FA and MD in right cingulum (hippocampus) were identified as the significant 

biomarkers. 

For the biomarkers of FC results, the connection map is depicted in Fig.4. We find the most 

discriminant FCs include: sub-regions in cerebellar lobe with both internal connections and to the 

cortical regions; STG to thalamus and cerebellar regions; right parahippocampal gyrus (PHG) to 

left calcarine and bilateral lingual gyrus; bilateral postcentral gyrus (PoCG) and paracentral lobe 

(PCL) to bilateral thalamus, caudate, and cerebellar regions. For the biomarkers of fALFF results, 

the most related fALFF voxels mainly located in bilateral occipital lobe, precuneus, and cuneus. 

Other smaller regions include left angular gyrus (ANG), bilateral lingual gyrus, calcarine, and 

cerebellar regions. 

 

Table 5 The most identified sMRI and DTI biomarkers. During classification procedure, the features 

selected in 10 folds of cross validation with optimal sparsity were recorded. The features selected 

with frequency over 5 in 10-fold cross validation were listed. 

       Brain Region                                 Feature  Hemisphere 

sMRI  

No.49 Superior segment of the circular sulcus of the insula Thickness Left 

No.36 
Planum temporale or temporal plane of the superior 

temporal gyrus 
Mean curvature Left 

No.51 Posterior transverse collateral sulcus Curvature index Left 

No.17 Long insular gyrus and central sulcus of the insula Curvature index Right 

DTI   

No.26 Superior corona radiate FA Left 

No.40 Fornix  FA Left 

No.37 Cingulum (hippocampus) FA, MD Right 

No.47 Uncinate fasciculus MD Right 

No.30 Posterior thalamic radiation (include optic radiation) FA Left 

No.29 Posterior thalamic radiation (include optic radiation) MD Right 

No.13 Superior cerebellar peduncle MD Right 

No.35 Cingulum (cingulate gyrus) MD Right 

 

Discussion 

In this paper, we propose a multimodal classification method to discriminate first-episode 

schizophrenia patients from healthy controls by a combined structural MRI, DTI and resting state-

functional MRI data. The features extracted included morphological measurements in both gray 

matter and white matter, functional connectivity and regional functional activity. We proposed a 

classification method composed of sparse coding and multi-kernel SVM, in which SC was applied 

for feature selection and SVM was used for multimodal classification. The best classification 



performance was achieved when all modalities were combined. More specifically, the structural 

varieties were shown in limbic system and prefrontal–thalamo–hippocampal circuit, while the 

functional abnormality was mainly found in default mode network (DMN) and FCs linked to 

cerebellar, parietal and temporal lobes.  

To the best of our knowledge, this is the first study for drug-naïve first-episode schizophrenia 

(FES) patients classification using a combined sMRI, fMRI and DTI technology. The effects of 

antipsychotic treatment on FES patients’ anatomical and functional changes have been widely 

reported in previous literature (Cahn et al., 2002; Lui et al., 2010; Wang et al., 2013; Zeng et al., 

2016). Though the elimination of pharmaceutical effect is important to understand the 

pathophysiology of FES, there are very few studies conducted for machine learning-based drug-

naïve FES patients classification, due to the difficulty of patients recruitment (Organization, 1993). 

Peruzzo et al. applied MKL and SVM to combined sMRI and DTI data from medicated FES patients, 

and found that the best classification performance was achieved by the integration of multimodal 

imaging information. In this study, a relatively small sample size (23 vs 23) was used, also the 

number of features was much less (442) compared to our study (78489) because of the lack of 

functional data. Functional network alteration plays an important role in the detection of early-onset 

brain changes, which often takes place before the morphological changes (Teipel et al., 2015). Sui 

et al. used a voxel-wise analysis and combined features from sMRI, DTI and rs-fMRI data and 

achieved a classification accuracy of 79%. However, the patients included in this study were not all 

first-episode schizophrenia. In our study, combining features from sMRI, fMRI and DTI data, we 

utilized a multi-kernel SVM classifier and reached the highest accuracy over 84% in classification 

of drug naïve FES patients.  

Recently, increasing number of studies improved the classification performance by using 

multi-modality data in a variety of mental disorders including SZ and Alzheimer’s disease (Dyrba 

et al., 2015; Wee et al., 2012; Zhang et al., 2011a). For multimodal data, the feature dimension 

significantly increases and overfitting problem is more prominent. For dimension reduction, a 

variety of methods including principal component analysis (PCA), independent component analysis 

(ICA) and linear discriminant analysis (LDA), were applied to improve the multimodal classifier 

performance (Richard et al., 2013; Song et al., 2017; Wang et al., 2013). Through dimensionality 

reduction, the feature information was represented in a lower dimension. Another way to reduce 

information redundancy is by feature selection, for which filter, wrapper, and embedding are widely 

applied methods (Cao et al., 2016; Shen et al., 2010; Sui et al., 2014). In our study, we applied SC 

for feature selection in our classification method. From the large number of features, SC eliminate 

most redundant features and combine the critical features for prediction. For FES auto-diagnosis by 

multimodal MR data, the small number of biomarkers selected by SC make the disease easier to 

interpret. Compared to other traditional methods, SC has been proved to achieve optimal selection 

of multiple features related to the classification task instead of separately considering the significant 

features. In our study, significant improvements in classification performance was shown when SC 

was applied for feature selection of multimodal imaging data. The improvements were presented 

for various feature dimensions ranged from 100 to 78489, as shown in Table 2. This provides a proof 

of the effectiveness of SC for feature selection in the integration of multimodal MRI data to improve 

the classification performance.  



For functional feature, the FC contributed most to the discrimination, among which the FCs 

from cerebellar area to cortical regions were the most identified ones. This finding is in line with 

previous SZ studies (Andreasen and Pierson, 2008; Collin et al., 2011; Kasparek et al., 2012). A 

recent study first reported functional abnormality in the cerebellum of drug-naïve FES patients (Guo 

et al., 2018). Cerebellum plays an important role in conceptual activity and emotion state as well as 

motor control (Schmahmann, 2001). Besides the cerebellar system, the medial temporal area within 

DMN also contributed to the classification in our study, including bilateral parahippocampal gyrus, 

precuneus and angular gyrus (Guo et al., 2017; Guo et al., 2014b; He et al., 2013; Wang et al., 2016). 

Medial temporal area function was related with autobiographical memory in SZ patients (Andrews‐

Hanna et al., 2014). We suggest that the syndromes caused by these functional network impairments 

are significantly related to early onset schizophrenia. The structural changes found in our study were 

mainly in the limbic system such as the insula area. While the biomarkers from DTI modality were 

related to fibers for memory such as UF, fornix, and hippocampus. The prefrontal–thalamo–

hippocampal circuit, as a well identified pathway in working memory (Bolkan et al., 2017; Marenco 

et al., 2012), has been reported closely related with SZ pathophysiology (Caprihan et al., 2015; 

Domen et al., 2013; Fitzsimmons et al., 2009; Poletti et al., 2015; Zhou et al., 2008).  

To summarize, the functional and structural biomarkers that we found to discriminate drug 

naïve FES patients have showed different regional characteristics. The functional features were 

mostly network connectivity to cerebellum and DMN, while structural features largely located in 

the limbic system and memory related circuits.  

 

Fig.3 The most identified ROIs in DTI data overlaid on JHU-ICBM white matter atlas. They were 

depicted in 6 tomographic images from 3 coordinates: The axial plane (z-plane), the coronal plane 

(y-plane), and the sagittal plane (x-plane). Top row: Significant FA ROIs biomarkers. Bottom row: 

Significant MD ROIs biomarkers. PTR-L= Left posterior thalamic radiation, SCR-L= Left superior 

corona radiata, CGH-R = Right cingulum (hippocampus), FX/ST-L = Left fornix/stria terminalis, 

CGC-R = Right cingulum (cingulate gyrus), PTR-R = Right posterior thalamic radiation, UF-R = 

Right uncinate fasciculus, CP-R = Right cerebral peduncle 



 

 

Fig.4 The connectivity map of top FC features. The labels on the circle denote the ROIs in AAL 

atlas as nodes in FCs. The edges are presented by bands with different colors that associated with 

the frequency. 

 

5. Conclusion 

In this paper, we have proposed a multimodal classification framework using multi-kernel and 

sparse coding machine learning method for discriminating drug naïve FES patients and heathy 

controls. We combine multimodal MR imaging data, including structural MR images, diffusion 

tension images and resting-state functional MR images. To effectively increase the performance of  

SVM classifier, we applied sparse coding to filter out the large number of features to identify the 

most discriminative image biomarkers. The best classification performance was achieved when 

incorporating all anatomical, diffusion weighted and resting state fMRI images for drug naïve FES 

patients. The identified functional markers mostly related to DMN and cerebellar connections, and 

the structural markers were within limbic system and memory related fibers.  
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