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Abstract 

Background 

The goal of our super resolution project is to generate high resolution images, which 

recover subjects’ unique features and remove artifacts or ringing, from down-sampled 

low-resolution MRI images.  

Method 

As the very first step, we utilize convolution neural network to provide us a very good 

initial estimation of the high-resolution data. And as the next step, we aim to extract 

and recover novel features which existed in practical patient images, based on k-space 

residual and sparsity constraint. As the ultimate step, we utilize optimization model 

based on data consistency to eliminate artifacts and give the final prediction. 

Results 

Based on our method, we convert every single MPRAGE image to 4 times high 

resolution image with well recovered novel feature and little artifact.  

Background 

1.1 Magnetic Resonance Imaging (MRI) 

Magnetic Resonance Imaging has been more and more widely used today in disease 

diagnosis for diseases like brain diseases, spinal disorder, cardiac function and so on. 

Although MRI requires longer requisition time than Computed Tomography (CT), it 

doesn’t require ionizing radiation and can be performed in any orientation.MRI image 
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has excellent 3-D capabilities, brilliant tissue contrast and high spatial resolution. [1] 

1.2 Super-resolution Technique 

However, there always exists trade-off problem between the resolution and speed in 

MRI. Limited by acquisition time and motion of subject, well-sampled image 

sometimes is hard to get. Instead, faster imaging techniques, such as Parallel Imaging 

[2], and post-acquisition processing techniques, such as Super-resolution [1] and 

Motion Correction [3, 4], are getting concerned.  

Super-resolution technique is to recover high-resolution images from down-sampled 

images. It offers higher resolution, ensuring additional significant information and 

increase the diagnosis possibilities.  

Identified Problem 

Super-resolution is an ill-posed problem and it’s difficult to achieve. (Fig.1). It aims to 

recover k space with 𝑘𝑚𝑎𝑥 = 𝑘1 in the condition that only scan for 𝑘𝑚𝑎𝑥 = 𝑘2(𝑘2 <

𝑘1) . To fill in all the fields which are zero-padded, additional prior information is 

needed. 

 

Fig.1 Ill-posed Problem in Super-resolution technique 

To solve this problem there are two main kinds of methods. [5]  

2.1 Regularized Formulation  

One is regularized formulation to reconstruct from sparse or noisy measurements to a 

high-quality image. 
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𝑅𝑟𝑒𝑔{𝑦} = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥∈𝜒𝑓(𝐻{𝑥}, 𝑦) + 𝑔(𝑥)            (1) 

In which 𝐻{𝑥} is degradation model, 𝑓 is cost function and 𝑔(𝑥) is regularization 

term that promotes solutions that match our prior knowledge of 𝑥  and makes the 

problem well posed simultaneously. Though, for the sake of its simple form, and 

difficulty to find suitable degradation model, prior information it can absorb is limited. 

2.2 Learning-based Method 

The other solution, where a training set of ground-truth images and their corresponding 

measurements is known. A parametric reconstruction algorithm, 𝑅𝑙𝑒𝑎𝑟𝑛, is then learned 

by solving 

𝑅𝑙𝑒𝑎𝑟𝑛{𝑦} = 𝑎𝑟𝑔𝑚𝑖𝑛𝑅𝜃,𝜃∈Θ ∑ 𝑓(𝑥𝑛, 𝑅𝜃{𝑦𝑛})

𝑁

𝑛=1

+ 𝑔(𝜃)             (2) 

Θ  is the set of all possible parameters, 𝑓  is a measure of error, and 𝑔(𝜃)   is a 

regularizer on the parameters to avoid overfitting. Once the learning step is complete, 

𝑅𝑙𝑒𝑎𝑟𝑛 can then be used to reconstruct a new image from its measurements. In this way, 

a deep learning based method has been built. The neural network can be deep and 

complex, and it can absorb more prior information. 

2.3 Problems in current learning-based methods 

In the last few years, plenty of researchers have been working on Super-resolution.[6, 

7] Nevertheless, they only focus on the satisfying visual resolution generously, but 

ignore artifacts and poorly recovered novel feature. (Fig.2) 

 

Fig.2 Distorted pattern (Red) and novels (Blue) 

This issue can be acceptable in natural pictures but will become fatal in medical images. 
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Medical images, in one sense, are created to find the novel features and help diagnosis. 

If medical image loses novel feature and contains such kind of artifacts, it will influence 

doctors’ judgment about patients. So that’s the problem we aim to solve. 

Potential Solutions 

We can briefly summary our methods as follow, or as shown in Fig.3. 

• As the very first step, we utilize convolution neural network to provide us a very 

good initial estimation of the high-resolution data.  

• And as the next step, we aim to extract and recover novel features which existed 

in practical patient images, based on k-space residual and sparsity constraint. 

• As the ultimate step, we utilize optimization model based on data consistency 

to eliminate artifacts and give the final prediction. 

 

Fig.3 Preliminary Pipeline and Methods 

3.1 Step#1 Deep Learning  

As the very first step, we utilize convolution neural network to provide us a very good 

initial estimation of the high-resolution data.  

3.1.1 Analysis of machine learning 

Machine learning is to learn P(output | input), and give the most probable output when 

certain data inputs. We can express our image as a function of θt (tissue property), θp 

(parameters related to imaging) and θg (geometry of the brain). (Fig.4) In this case, 

machine learning is to learn the joint distribution of pixel value and θt, θp, θg.[8] 
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Fig.4 Image Model 

By default, researchers train their model with same modality so that θp is constant.  

In traditional way, researchers patch their images to throw them into network, then get 

output of each patch and concatenate them into a whole image. They also don’t 

implement image normalization to reduce variation of θ𝑔 to least. [6, 7] In this way, 

what the Convolution Neural Network (CNN) learns is P( θ𝑡 − high ,  θ𝑔 − high| θ𝑡 −

low , θ𝑔 − low ).  

3.1.2 Design of Data Preprocessing  

To reduce the difficulty of network training, we decided to leverage the advantage of 

image normalization which based on DARTEL algorithm.[9] In this way, we minimize 

the influence of θg (geometry variation). What’s more, we don’t patch data, which 

means whole images are thrown into neural network. By doing so, we aim to help CNN 

learn P( θ𝑡 − high| θ𝑡 − low) more accurately and efficiently. 

3.1.3 Design of Neural Network Structure 

We utilize U-net Generative Adversarial Network (GAN) as our CNN architecture, and 

Res-net GAN as a contrast. U-net GAN architecture is also utilized in [10] for super-

resolution. These network architectures are shown below. (Fig.5,6,7) 

 

Fig.5 Generative Adversarial Network (GAN) architecture 
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Fig.6 Resnet-GAN architecture  

 

Fig.7 U-net architecture  

3.2 Step#2 Novel Feature Extraction 

The CNN output has much higher resolution than input, but the novel feature is still 

obscure. As the next step, we aim to extract and recover novel features which existed 

in practical patient images, based on k-space residual and sparsity constraint. 

3.2.1 Assumption 

We build our model based on two assumptions: 

1. Difference in inner k space contains novel feature 

2. Feature is sparse in some domain (Image domain, Total Variation (TV), etc) 

3.2.2 Model 

Our model names Sparsity Based Novel Feature Extraction model. This optimization 

model can be expressed as below: 

𝑎𝑟𝑔𝑚𝑖𝑛𝜌||𝑑′ − Ω𝐹𝜌||2
2 + 𝜆||𝑊𝜌||1            (3) 
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𝑑′ = 𝑑 − 𝑑𝑟𝑒𝑓 

In which 𝑑 is true inner k space data, 𝑑𝑟𝑒𝑓 is data consistency result k space data, 𝑊 

represents sparsity transform, Ω represents truncation operator, 𝐹 is Fourier Transorm 

Operator, 𝜆 is regularization constant, and 𝜌 is to be solved.  

In brief, we aim to extract features from difference of true inner k space and CNN 

prediction inner k space, as is shown in Fig.8. 

 

Fig.8 Procedure of getting 𝑑′ in Step#2  

3.2.3 Sparsity Transform 

In our Sparsity Based Novel Feature Extraction model, we need specific sparsity 

transform 𝑊 to transform feature into domains in which it’s sparse. For now, we tried 

two, one is 𝑊 = 𝐼(identity matrix), and the other is 𝑊 = ∇(Total Variation).  

3.3 Step#3 Optimization based on Data Consistency  

After novel feature extraction, the image still has some artifacts and ringing. As the 

ultimate step, we utilize optimization model based on data consistency to eliminate 

artifacts and give the final prediction. Here, we build two different models to solve it. 

3.3.1 Traditional Data Consistency Model 

We build this model based on Fourier Series. And we believe our ideal prediction should 

be a balance of input data and novel feature step recovered image. 

𝑎𝑟𝑔𝑚𝑖𝑛𝑥||𝑦 − Ω𝐹𝑥||2
2 + 𝜆||𝑃 − 𝑥||2

2           (4) 

In which 𝑦  is true inner k space data, 𝑃  is novel feature step recovered image, 
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Ω  represents truncation operator, F  is Fourier Transform Operator, 𝜆  is regularization 

constant, and 𝑥 is to be solved.  

3.3.2 Generalized Series Method (GSM) [11] 

We believe artifacts can be eliminated by generalizing series basis to remove the 

variation in k space. The model can be expressed as: 

𝑎𝑟𝑔𝑚𝑖𝑛𝑐𝑙
||𝑑 − Ω⨀[𝑑

~

(𝑘) ∗ ∑ 𝑐𝑙

𝐿

𝑙=−𝐿

𝛿(𝑘 − 𝑙Δ𝑘)]||2
2 + 𝜆 ∑ |

𝑙

|𝑐𝑙||2
2      (5) 

⟹ 𝑎𝑟𝑔𝑚𝑖𝑛𝑐𝑙
||𝑑 − 𝐴𝑐||2

2 + 𝜆 ∑ |

𝑙

|𝑐𝑙||2
2 

In which 𝑑 is true inner k space, 𝑑
~

(𝑘) is k space of novel feature recovered image, 

Ω is mask, 𝐿 is kernel size, 𝜆 is penalty constant, and 𝑐𝑙 is to be solved. Once 𝑐𝑙 is 

computed, we can get our predicted image by 𝐹−1[𝑑
~

(𝑘) ∗ ∑ 𝑐𝑙
𝐿
𝑙=−𝐿 𝛿(𝑘 − 𝑙Δ𝑘)]. 

Results and Discussion 

4.1 Step#1 Deep Learning  

We obtain images with much higher resolution in this step with the help of image 

normalization and U-net GAN.  

4.1.1 Image Normalization Effect 

As shown in Fig.9, after normalization, both training loss and valid loss drops more 

rapidly. Moreover, valid loss of normalized data is much lower than that of non-

normalized when it reaches convergence. Therefore, normalization does help learning 

converge faster and lower the loss.  
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Fig.9 Training loss and Valid loss with normalized or non-normalized data   

And as shown in Fig.10, prediction of CNN trained with normalized data has similar 

contrast with ground truth and doesn’t generate new artifacts (Red frame). 

 

Fig.10 CNN Prediction – trained with normalized data or non-normalized data 

4.1.2 Comparison between Resnet-GAN and U-net GAN 

Basically, results of the two network architectures (Fig.11) are compared in three 

aspects: resolution, novel feature recovery and artifact.  

1. Resolution. They are comparative in resolution.  

2. Novel Feature Recovery. In Deep Learning step, we want CNN to absorb as much 

priori as possible, so in case we only train it with normal subjects, it should regard 

tumor as normal tissue, because in normal subjects there should be gray matter or 

white matter. Therefore, our ideal CNN output should have obscure or even no 

novel feature. In our results, tumor is rather light and clear in Resnet-GAN output, 

while it’s obscure and dim in U-net GAN output, which proves that Resnet-GAN 

learns a local sharpening, while U-net GAN learns a distribution. It still needs 

further study. 

3. Artifact. Res-net GAN generates more artifacts. In Fig.11, a drill is found in the 

red frame in Res-net GAN output, but it doesn’t exist in both U-net GAN output 
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and ground truth. There’s another example: a drill appears against expectation in 

Fig.12.  

 

Fig.11 Comparison between U-net GAN result and Res-net GAN result 

 

Fig.12 Artifacts generated by Resnet-GAN 

4.2 Step#2 Novel Feature Extraction  

After Deep Learning step, we get images with much higher resolution but poorly 

recovered novel feature (Fig.13). Then we extract novel feature with our model with 

sparsity constraint. We find that we could extract features and enhance its contrast, but 

the limitation is that it’s still low-resolution. 
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Fig.13 Poorly Recovered Feature in CNN 

4.2.1 Image Domain Sparsity Result 

As shown in Fig.14, we get difference in inner k space in Fig.8 procedure, and solve (3) 

model, and get our extracted novel feature. We can notice that pixel values in tumor are 

a little lighter. Then we get our feature-recovered image by procedure in Fig.14. 

We can discover enhanced contrast but still low resolution in Fig.15. Also, because 

extracted novel feature contains ringing in some degree, we need to implement Step#3, 

optimization based on data consistency. 

 

Fig.14 Extracted novel feature with image domain sparsity 
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Fig.15 Novel Feature Extraction result with image domain sparsity constraint 

4.2.2 Total Variation Sparsity Result 

The Total Variation (TV) in one direction is defined as: 

𝑉(𝑦) = ∑|𝑦𝑛+1 − 𝑦𝑛|

𝑛

             (6) 

We utilize TV in two directions and solve the feature extraction model with it. 

Compared with image domain sparsity constraint result, this time recovered image also 

has improved contrast and low resolution, but it doesn’t contain additional ringing. 

(Fig.16, 17) 
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Fig.16 Extracted novel feature with TV sparsity 

 

Fig.17 Novel Feature Extraction result with TV sparsity constraint 

4.2.3 The improvement and validation 

To solve the low-resolution problem, our future plan is  

• 1. To locate novel feature 
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• 2. To get a realistic image of brain without feature in CNN  

Our validation about these two goals is as follows.  

We aim to extract novel features from inner k space difference. 

Take the simplest case, we know the location and the tumor’s low-resolution image. (Fig.18) We 

put the image into model (5) and limit its variation to known location. Then we get our result in 

Fig.19. It looks similar to ground truth with a little variation. 

     

Fig.18 Validation Stage 1          Fig.19 Stage 1 Result 

Then things become a little more complex. This time we know tumor’s location, but we only have 

low resolution image of brain with tumor and low-resolution image without tumor. That means, 

surrounding pixels are warped into the tumor area. We also get a clear result in Fig.21. 
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Fig.20 Validation Stage 2           

 

Fig.21 Stage 2 Result 

And then, if we don’t have low-resolution image without tumor, instead, we have CNN predicted 

image, things become rather tricky. If our CNN is ideal, its prediction should be very similar to brain 

image without tumor. In practical situation, there still exists some feature in image. Therefore, this 

time our result is not so good as before. 

 

Fig.22 Validation Stage 3    

 

Fig.23 Stage 3 Result 

And if we restrict the conditions, we don’t know the location, it becomes our practical situation. We 
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don’t know the location, so utilize sparsity instead; we don’t have real brain image without tumor, 

so use low-resolution CNN prediction as an alternative. That’s the reason why we cannot get a good 

result as stage1 or 2 does. And that’s what we’ll make effort to in the future. 

 

Fig.23 Practical Situation    

 

Fig.24 Current Result    

4.3 Step#3 Optimization based on Data Consistency 

Our conclusion in this step is: 

1. If we utilize image domain sparsity in Step#2, it’s necessary and helpful to 

implement Step#3, while if we utilize TV sparsity, it’s not necessary. 

2. Traditional way to do data consistency does little work in our case, while GSM 

performs well in novel feature that done in image domain but decreases the quality 

of image when using total variance because the latter way already performs well in 

novel feature. 

4.3.1 Traditional Data Consistency Model Result 

We can observe little improvement in assessments before and after optimization. 

(Fig.25,26) 
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Fig.25 Traditional Model Result with extracted novel feature by image domain sparsity    

 

Fig.26 Traditional Model Result with extracted novel feature by TV sparsity    

4.3.2 Generalized Series Model Result 

We can observe obvious improvement in assessments before and after optimization by 

GS model with image domain sparsity, but detriment for that with TV sparsity.  

(Fig.27,28) 
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Fig.27 GS Model Result with extracted novel feature by image domain sparsity    

 

Fig.28 GS Model Result with extracted novel feature by TV sparsity    

Conclusion 

⚫ We build a new strategy for super-resolution in MRI and achieve 4 times high 

resolution, with recovered novel feature and no artifact.  

⚫ For Deep Learning part, we utilize image normalization and no patch strategy to 

help neural network learn more efficiently and accurately. 
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⚫ For Novel Feature Extraction part, we build model based on image sparsity and TV 

sparsity and recover novel features contrast. 

⚫ For Optimization based on Data Consistency part, we build two models based on 

Fourier Series and Generalized Series, and improve the image quality. 

⚫ Our future plan is to optimize neural network structure and find more suitable 

sparsity constraint and better data consistency. 
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